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Aims and Contents

In this course, crucial parts of the upcoming book Hopf algebras and root systems,
joint with Hans-Jürgen Schneider, are presented. The main aim is to present a crite-
rion (Corollary 8.5), based on reflections, for finite-dimensionality of the Nichols al-
gebra of a semisimple Yetter-Drinfeld module, and to discuss the role of bosonization
and right coideal subalgebras for this criterion. As a side result, a parametrization
of the set of graded right coideal subalgebras of finite-dimensional Nichols algebras
in terms of morphisms of the Weyl groupoid is given.

(1) Yetter-Drinfeld modules and the functor Ω changing module and comodule
structures

(2) Braided Hopf algebras, gradings and Nichols systems
(3) Reflections of Nichols systems
(4) Right coideal subalgebras and their compatibility with reflections
(5) Tensor decompositions of Yetter-Drinfeld modules
(6) Excursion: Cartan graphs and their Weyl groupoids
(7) The semi-Cartan graph of a Nichols algebra
(8) The combinatorics of right coideal subalgebras
(9) Applications to Hopf algebras

Reflection is a tool for (braided) Hopf algebra triples. The theory is most efficient
if several Hopf algebra triples are available.

1. Yetter-Drinfeld modules

Yetter-Drinfeld modules appear naturally in the context of Hopf algebra triples.

Definition 1.1. Let H be a Hopf algebra with bijective antipode. A Yetter-
Drinfeld module V over H is a left H-module V with a left H-comodule structure
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δ : V → H ⊗ V such that

δ(hv) = h(1)v(−1)S(h(3))⊗ h(2)v(0)

for all h ∈ H, v ∈ V , where δ(v) = v(−1) ⊗ v(0).

Notation: H
HYD = category of Yetter-Drinfeld modules over H.

Example 1.2. H = kG, the group algebra of a group G. Then any H-comodule is
of the form

V = ⊕g∈GVg
with Vg = {v ∈ V | δ(v) = g ⊗ v} for all g ∈ G. Moreover, V ∈ H

HYD for an
H-module H-comodule V if and only if hVg = Vhgh−1 for all g, h ∈ G.

Until the end of the script let H be a Hopf algebra with bijective antipode S.

Lemma 1.3. If V,W ∈ H
HYD then V ⊕W ∈ H

HYD and V ⊗W ∈ H
HYD with

h(v ⊗ w) = h(1)v ⊗ h(2)w, δ(v ⊗ w) = v(−1)w(−1) ⊗ (v(0) ⊗ w(0))

for all h ∈ H, v ∈ V , w ∈ W .

As a consequence, Yetter-Drinfeld modules over H form a monoidal category with
morphisms being linear maps f : V → W which are H-module and H-comodule
maps.

Proposition 1.4. For any V,W ∈ H
HYD, the map cV,W : V ⊗W → W ⊗ V ,

cV,W (v ⊗ w) = v(−1)w ⊗ v(0)

for all v ∈ V , w ∈ W , is an isomorphism in H
HYD, called the braiding. The inverse

map is given by
c−1
V,W (w ⊗ v) = v(0) ⊗ S−1(v(−1))w.

Yetter-Drinfeld modules with their braiding form an important example of a
braided monoidal category.

Finite-dimensional Yetter-Drinfeld modules admit natural duals. Indeed, if V ∈
H
HYD is finite-dimensional, then the dual vector space V ∗ is in H

HYD via

(hf)(v) = f(S(h)v), f(−1)f(0)(v) = S−1(v(−1))f(v(0))

for all h ∈ H, f ∈ V ∗, v ∈ V .
There are several functors relating different categories of Yetter-Drinfeld modules.

For us, the interchange of module and comodule structures will be crucial. The
situation is most convenient if H is finite-dimensional.
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Lemma 1.5. Let V ∈ H
HYD. If H is finite-dimensional, then there is a unique

Yetter-Drinfeld structure on V over H∗op cop with

fv = f(v(−1))v(0), hv = v[−1](h)v[0]

for all f ∈ H∗, h ∈ H, v ∈ V , where δ(v) = v(−1) ⊗ v(0) is the H-coaction and
δ′(v) = v[−1] ⊗ v[0] is the H∗ cop-coaction of V .

Remark 1.6. Typically, we will write Ω(V ) for V with the Yetter-Drinfeld structure
over H∗op cop.

With the definition, the H-comodule structure of V is turned into an H∗ op-module
structure, and the H-module structure into an H∗ cop-comodule structure. The two
Yetter-Drinfeld structures of V are equivalent in the sense that any one is obtained
from the other. In mathematical terms: Ω is a braided monoidal isomorphism of
categories. (Compatibilities with morphisms, tensor products, and with the braiding
are available.)

If H is not finite-dimensional, then one has to deal with a dual pair (H,H ′) of
Hopf algebras (where H ′ plays the role of H∗op cop) and one has to restrict himself
to rational modules in order to preserve the equivalence.

The theory uses an even more general form of the equivalence Ω, where H is
replaced by a braided Hopf algebra.

2. Nichols systems

The aim of this section is to introduce Nichols systems. This is our fundamental
notion for the study of Nichols algebras of semi-simple Yetter-Drinfeld modules.

First we define braided Hopf algebras — here only Hopf algebras in the category
of Yetter-Drinfeld modules.

Lemma 2.1. Let (D,∆D, εD) and (D′,∆D′, εD′) be coalgebras in H
HYD, that is coal-

gebras, such that D,D′ ∈ H
HYD and ∆D,∆D′, εD, εD′ are morphisms in H

HYD. Then
D ⊗D′ is a coalgebra in H

HYD with comultiplication

∆ = (idD ⊗ cD,D′ ⊗ idD′)(∆D ⊗∆D′).

Definition 2.2. A tuple (S, µ, η,∆, ε,S) is a Hopf algebra in H
HYD with a Yetter-

Drinfeld module S, multiplication µ, unit η, comultiplication ∆, counit ε, antipode
S, if all these maps are morphisms in H

HYD, and the usual Hopf algebra axioms are
fulfilled.
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Note that ∆S = ∆ is an algebra map if and only if ∆Sµ = (µ⊗µ)∆S⊗S. Thus the
braiding of S is part of the definition of a Hopf algebra in H

HYD. If H = k, then a
Hopf algebra in H

HYD is an ordinary Hopf algebra.
We will need Nθ

0-gradings, θ ∈ N, of Yetter-Drinfeld modules and of braided Hopf
algebras. From the general perspective, often one can work with any abelian monoid
rather than with Nθ

0.

Definition 2.3. Let Γ be an abelian monoid. A Yetter-Drinfeld module V ∈ H
HYD

is Γ-graded, if

V =
⊕
γ∈Γ

V (γ)

for some subobjects V (γ) ∈ H
HYD. A morphism f : V → W between Γ-graded

Yetter-Drinfeld modules V,W is graded if

f(V (γ)) ⊆ W (γ)

for all γ ∈ Γ.

If V,W ∈ H
HYD are Γ-graded, then V ⊗W is Γ-graded by

(V ⊗W )(γ) =
⊕

γ′+γ′′=γ

V (γ′)⊗W (γ′′)

for all γ ∈ Γ. Then the braiding cV,W : V ⊗W → W ⊗V of Γ-graded Yetter-Drinfeld
modules is a graded morphism.

Definition 2.4. Let Γ be an abelian monoid. A Hopf algebra S ∈ H
HYD is Γ-graded,

if S ∈ H
HYD is Γ-graded and if all morphisms µ, η,∆, ε,S are graded.

Let θ ∈ N and I = {1, 2, . . . , θ}. We write FH
θ for the category of families

M = (M1, . . . ,Mθ),

where Mi ∈ H
HYD is finite-dimensional for each i ∈ I. A morphism f : M → N in

FH
θ is a tuple f = (f1, . . . , fθ), where fi : Mi → Ni is a morphism in H

HYD for all
i ∈ I.

In the most interesting cases, all coordinates Mi of our M ∈ FH
θ will be irre-

ducible (i. e. non-zero and have no non-trivial Yetter-Drinfeld submodule), but for
some constructions this assumption is not needed.

Let (αi)i∈I denote the standard basis of Zθ.
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Definition 2.5. Let S be a Hopf algebra in H
HYD, N1, . . . , Nθ be finite-dimensional

subobjects of S in H
HYD, and N = (N1, . . . , Nθ). Let

f = (fj)j∈I : N →M

be an isomorphism of tuples in FH
θ for some M ∈ FH

θ . The triple N = N (S,N, f)
is called a pre-Nichols system of M if

(Sys1) S is generated as an algebra by N1, . . . , Nθ, and
(Sys2) S is an Nθ

0-graded Hopf algebra in H
HYD with deg(Nj) = αj for all j ∈ I.

Note that M seems to play a minor role in the above definition. The importance of
M will turn out later, when out of one we construct infinitely many new pre-Nichols
systems and relate them to each other.

Let N = N (S,N, f) be a pre-Nichols system of a tuple M ∈ FH
θ . Then S(0) = k1

and
∑θ

j=1Nj =
⊕θ

j=1Nj by (Sys1) and (Sys2). By a general result, the antipode of
S is bijective. We will use the notation

Nj = Nj, 1 ≤ j ≤ θ.

Definition 2.6. Let M ∈ H
HYD be finite-dimensional (that is, M ∈ FH

1 ) and
N (S,N, f) a pre-Nichols system of M . Then S is called a pre-Nichols algebra
of M . A pre-Nichols algebra S of M is a Nichols algebra of M , if all primitive
elements of S are in S(1).

Remark 2.7. Up to isomorphism there is only one Nichols algebra of M . We write
B(M) for it. For any pre-Nichols algebra S of M and any isomorphism f : S(1)→M
there is a unique surjection S → B(M) which is f on S(1).

It is a general (usually very hard) problem to decide whether B(M) is finite-
dimensional and to give a presentation of it by generators and relations.

Let N = N (S,N, f) be a pre-Nichols system of a tuple M ∈ FH
θ . We write

pN : S → B(M)

for the surjective map of Nθ
0-graded Hopf algebras in H

HYD which is defined by

fj : Nj

∼=−→Mj ⊆ B(M) on Nj, j ∈ I. It is called the canonical map of N .
For the definition of a Nichols system we need the braided adjoint action.

Definition 2.8. Let S be a Hopf algebra in H
HYD. The morphism

adS = µ(µ⊗ S)(idS ⊗ cS,S)(∆⊗ idS) : S ⊗ S → S
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is called the braided adjoint action.

If S is a Hopf algebra, then adS(x⊗ y) = x(1)yS(x(2)) for all x, y ∈ S.

Definition 2.9. Let M ∈ FH
θ , and N = N (S,N, f) a pre-Nichols system of M . Let

i ∈ I. Then N is called a Nichols system of (M, i), if pN defines bijective maps

(Sys3) k[Ni] ∼= B(Mi), and
(Sys4) (adSNi)

n(Nj) ∼= (adB(M)Mi)
n(Mj) for all j ∈ I \ {i} and n ≥ 0.

Note that N0 = N (B(M),M, id) is a Nichols system of (M, i) with canonical map
pN0 = idB(M).

3. Reflections of Nichols systems

Definition 3.1. Let A be a Hopf algebra in H
HYD. A Hopf algebra triple over

A is a triple (S, π, γ), where π : S → A, γ : A → S are Hopf algebra morphisms in
H
HYD such that πγ = idA. The elements of the subalgebra

ScoA = {s ∈ S | (id⊗ π)∆(s) = s⊗ 1}
of S are called the right coinvariants.

Similarly, one defines the subalgebra coAS of left coinvariants.
Hopf algebra triples are important because of the bosonization:

S ∼= ScoA#A,

and ScoA is a braided Hopf algebra in A#H
A#HYD. Here, # means tensor product with

a special multiplication and comultiplication, depending only on structures of ScoA

and A. (Notice that even if S and A are ordinary Hopf algebras, ScoA is a braided
Hopf algebra. This is the main reason, why our generality is necessary.)

The advantage of pre-Nichols systems is that they admit many natural Hopf al-
gebra triples.

Definition 3.2. Let i ∈ I, M ∈ FH
θ , and let πi : B(M) → B(Mi) be the Hopf

algebra projection defined by the projection
⊕θ

j=1Mj →Mi in H
HYD.

Let N = N (S,N, f) be a pre-Nichols system of M . We write

π̃Ni : S → k[Ni], γ̃Ni : k[Ni]→ S

for the canonical Nθ
0-graded maps which are the identity on Ni. Moreover, let

KNi = Scok[Ni], LNi = cok[Ni]S,
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where the left and right coinvariant elements are defined with respect to π̃Ni .

Remark 3.3. Let i ∈ I and let N = N (S,N, f) be a pre-Nichols system of M . Then
(S, π̃Ni , γ̃

N
i ) is a Hopf algebra triple over k[Ni].

In order to define reflections of Nichols systems, one needs an additional finiteness
assumption.

Definition 3.4. Let i ∈ I and N ∈ FH
θ . We say that N is i-finite, if for each

j ∈ I \ {i} there exists m ≥ 0 with (adNi)
m(Nj) = 0 in B(N). In this case, let

aNii = 2, aNij = −max{m ≥ 0 | (adNi)
m(Nj) 6= 0}

for j 6= i, and sNi ∈ Aut(Zθ) the reflection with

sNi (αj) = αj − aNijαi
for all j 6= i. If N is i-finite, then the tuple Ri(N) ∈ FH

θ with

Ri(N)i = N ∗i , Ri(N)j = (adNi)
−aNij (Nj)

for j 6= i is called the i-th reflection of N .

Note that sNi (αi) = −αi in the above definition.

Definition 3.5. Let M ∈ FH
θ , i ∈ I, and let N = N (S,N, f) be a Nichols system

of (M, i). Assume that Mj is irreducible for all j 6= i and that M is i-finite. Let

Ñ = (Ñ1, . . . , Ñθ), f̃ = (f̃1, . . . , f̃θ), Ri(N ) = N (S̃, Ñ , f̃),

where S̃ = Ω(KNi )#B(M ∗
i ) is the bosonization of the Hopf algebras Ω(KNi ) and

B(M ∗
i ), Ñi = M ∗

i , Ñj = (adNi)
−aNij (Nj) for j 6= i, f̃i is the identity on M ∗

i , and

f̃j : Ñj → Ri(M)j for j ∈ I \ {i} is the isomorphism induced by pN . The triple
Ri(N ) is called the i-th reflection of N .

The name reflection is justified partially by the following.

Proposition 3.6. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in H

HYD for
all j ∈ I \ {i}. Assume that M is i-finite. Let N be a Nichols system of (M, i).
Then Ri(N ) is a Nichols system of (Ri(M), i). Moreover,

(1) Ri(M)j is irreducible in H
HYD for all j ∈ I \ {i} and Ri(M) is i-finite,

(2) a
Ri(M)
ij = aMij for all j ∈ I, and

(3) M and Ri(Ri(M)) are isomorphic FH
θ .
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Interestingly, Nichols systems and their reflections are very closely related in many
respects.

Proposition 3.7. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in H

HYD for
all j ∈ I \ {i}. Assume that M is i-finite. Then for any Nichols system N of (M, i)
there is a unique algebra isomorphism

TNi : L
Ri(N )
i → KNi

in H
HYD such that for all j ∈ I \ {i}, 0 ≤ n ≤ −aMij , and y ∈ (adS̃M

∗
i )n(Ñj),

TNi (S−1

S̃
(y)) = −y.

This TNi restricts to an isomorphism

L
Ri(N )
i (α)→ KNi (s

Ri(N)
i (α))

for all α ∈ Nθ
0.

4. Right coideal subalgebras

Definition 4.1. A right coideal subalgebra C of a Hopf algebra S ∈ H
HYD is a

subalgebra in H
HYD such that ∆(C) ⊆ C ⊗ S.

Generally, if C is a right coideal subalgebra of S in H
HYD, then C ⊗H is a right

coideal subalgebra of S#H containing H, but the converse is usually false.
Now we look at the compatibility of right coideal subalgebras with reflections.

Definition 4.2. For any M ∈ FH
θ , i ∈ I, and for any Nichols system N =

N (S,N, f) of (M, i) we define

K(N ) = {E | E ⊆ S Nθ
0-graded right coideal subalgebra in H

HYD},
K+
i (N ) = {E | E ∈ K(N ), Ni ⊆ E},
K−i (N ) = {E | E ∈ K(N ), Ni * E}.

Let N = N (S,N, f) be a Nichols system of some (M, i) with M ∈ FH
θ and Mi

irreducible. Then for an Nθ
0-graded right coideal subalgebra E of S, either Ni ⊆ E

or E ⊆ LNi .

Theorem 4.3. Let M ∈ FH
θ , i ∈ I, and let N be a Nichols system of (M, i). Assume

that M is i-finite, and that Mj is irreducible in H
HYD for all j ∈ I.
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(1) The map

tNi : K−i (Ri(N ))→ K+
i (N ), E 7→ TNi (E)k[Ni],

is bijective with inverse given by E 7→ (TNi )−1(E ∩KNi ).
(2) The multiplication map TNi (E)⊗ k[Ni]→ TNi (E)k[Ni] is bijective for all E ∈
K−i (Ri(N )).

This theorem is the main ingredient towards a general construction of right coideal
subalgebras. Indeed, let S be a finite-dimensional Nichols algebra in H

HYD and let
E 6= k1 be a right coideal subalgebra of S. Then E contains a non-zero primitive
element, that is, a non-zero subspace of S(1). Now the only thing to do is to find
a context for S and E such that Theorem 4.3 applies. Then E ′ = (tNi )−1(E) is a
right coideal subalgebra of another braided Hopf algebra, and dim(E ′) < dim(E).
By induction, E can be constructed using a finite sequence of reflections. Moreover,
this procedure also gives a nice decomposition of E.

In fact, this idea applies not only to finite-dimensional Nichols algebras. However,
the context has to be chosen carefully. Next we will specify the necessary notions:
Tensor decompositions and Cartan graphs.

5. Tensor decompositions

Let us specify the idea from the previous section to decompose right coideal sub-
algebras.

Definition 5.1. Let V be an Nθ
0 graded object in H

HYD. We say that V is tensor
decomposable if there exist n ∈ N0, irreducible objects Q1, . . . , Qn ∈ H

HYD and
pairwise distinct elements β1, . . . , βn ∈ Nθ

0 such that

V ∼= B(Q1)⊗ B(Q2)⊗ · · · ⊗ B(Qn)

as Nθ
0-graded objects in H

HYD with deg(Qi) = βi for all 1 ≤ i ≤ n.

There exist more general notions of tensor decomposability, but for this course
(and also for the book) the above definition is sufficient.

We will be interested in tensor decomposable Nichols algebras and right coideal
subalgebras. Our aim is to provide more details on the data implementing a tensor
decomposition. In important cases, for example if S is a finite-dimensional Nichols
algebra in H

HYD of a semi-simple Yetter-Drinfeld module, then S and all its right
coideal subalgebras will be tensor decomposable.
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In general, the existence of a tensor decomposition of an Nθ
0-graded object in H

HYD
is not guaranteed. However, a direct consequence of the theorem of Krull-Remak-
Schmidt implies uniqueness of the tensor decomposition up to isomorphism. In
particular, the number n and the set {β1, . . . , βn} are uniquely determined.

6. Cartan graphs

We start with a purely combinatorial structure and then we discuss when a pre-
Nichols system has a canonical Cartan graph.

For a finite set I, let (αi)i∈I be the standard basis of ZI = {f : I → Z}. Recall
that a Cartan matrix is an integer valued matrix C with cii = 2 for all i, cij ≤ 0 for
all i 6= j, and such that cij = 0 if and only if cji = 0.

Definition 6.1. Let I be a non-empty finite set (the labels), X a non-empty set
(the points), and r : I ×X → X , A : I × I ×X → Z maps. We write

ri(X) = r(i,X) ∈ X , aXij = A(i, j,X) ∈ Z, AX = (aXkl)k,l∈I ∈ ZI×I

for all i, j ∈ I, X ∈ X . We say that G = G(I,X , r, A) is a semi-Cartan graph if
for all X ∈ X , AX is a Cartan matrix, and

(CG1) for all i ∈ I, r2
i (X) = X, and

(CG2) for all i, j ∈ I and X ∈ X , aXij = a
ri(X)
ij . (AX and Ari(X) have the same i-th

row.)

The cardinality of I is the rank of G. For all i ∈ I and X ∈ X let sXi ∈ Aut(ZI)
with

sXi (αj) = αj − aXijαi
for all j ∈ I. This is a reflection of ZI .

One possible interpretation of a semi-Cartan graph is that for each point X one
has a Cartan matrix AX , and for each label i ∈ I, an i-neighbor ri(X) of X, such
that (CG1) and (CG2) hold.

It is easy to write down semi-Cartan graphs with few points. In general, the
Cartan matrices in different points do not coincide.

If there is only one point, then a semi-Cartan graph is the same as a Cartan
matrix. In Lie theory, there is a Weyl group and a set of real roots attached to a
Cartan matrix. Semi-Cartan graphs have a Weyl groupoid and real roots, and if the
structure of real roots is good, we talk about a Cartan graph.
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Definition 6.2. For a set X and a finite set I, let D(X , I) be the category with
objects the elements of X such that

Hom(X, Y ) = {(X, f, Y ) ∈ X × End(ZI)×X}
and (X, f, Y ) ◦ (Y, g, Z) = (X, fg, Z) for all X, Y, Z ∈ X , f, g ∈ End(ZI).

For a semi-Cartan graph G = G(I,X , r, a) let W(G) be the smallest subcategory
of D(X , I) containing all objects from X and all morphisms (ri(X), sXi , X) with
X ∈ X , i ∈ I.

By abuse of notation we also write sXi for the morphism (ri(X), sXi , X) in W(G).

By (CG1) and (CG2), s
ri(X)
i sXi = idZi for all X ∈ X and i ∈ I. Thus the category

W(G) is a groupoid (i. e. all morphisms are isomorphisms).

Definition 6.3. Let G = G(I,X , r, A) be a semi-Cartan graph. For all X ∈ X , the
set

∆X re = {w(αi) ∈ ZI | w ∈ HomW(G)(Y,X), Y ∈ X , i ∈ I}
is called the set of real roots of G at X. The real roots αi, i ∈ I, are called
simple. Real roots in NI

0 are called positive, those in −NI
0 negative.

The semi-Cartan graph G is finite, if ∆X re is finite for all X ∈ X .
For all X ∈ X and i, j ∈ I let

mX
ij = |∆X re ∩ (N0αi + N0αj)|.

The semi-Cartan graph G is a Cartan graph, if

(CG3) for all X ∈ X , ∆X re consists only of positive and negative roots, and

(CG4) for all X ∈ X , i, j ∈ I with mX
ij <∞, (rirj)

mX
ij (X) = X.

So far, there exists a classification of all finite Cartan graphs, but only by a com-
puter calculation. Finite Cartan graphs are closely related to simplicial arrange-
ments. Rank two Cartan graphs can be described naturally via triangulations of
regular n-gons.

Morphisms in W(G) for a Cartan graph G are products of simple reflections sXi .
They admit a theory very similar to the theory of Coxeter groups. In particular,
for any point of a finite Cartan graph there is a unique longest morphism ending in
that point.

We introduce two other axioms, which arise in the study of right coideal subalge-
bras.



12

Definition 6.4. Let G(I,X , r, A) be a semi-Cartan graph, X ∈ X , l ≥ 0, and
κ = (i1, . . . , il) ∈ I l.

(1) For all 1 ≤ k ≤ l let

βX,κk = idXsi1 · · · sik−1(αik).

Let ΛX(κ) = {βX,κk | 1 ≤ k ≤ l}.
(2) We say that κ is X-reduced, if for all 1 ≤ k ≤ l, αik /∈ Λrik ···ri1(X)(ik+1, . . . , il).

A sequence κ ∈ I l is X-reduced if and only if βX,κp 6= −βX,κq for any 1 ≤ p < q ≤ l.

Thus, any sequence in I1 is X-reduced, and a sequence in I2 is X-reduced if and
only if it is not constant. For any semi-Cartan graph G(I,X , r, A) and any X ∈ X ,
i, j ∈ I, let mX

ij be the largest positive integer m such that the sequence (i, j, i, j, . . . )

of length m is X-reduced. If such an m doesn’t exist, let mX
ij =∞.

Proposition 6.5. A semi-Cartan graph G(I,X , r, A) is Cartan if and only if it
satisfies the following axioms.

(CG3’) For any X ∈ X and any X-reduced sequence κ, ΛX(κ) ⊆ NI
0.

(CG4’) For any X ∈ X and i, j ∈ I with i 6= j and mX
ij <∞ we have

(rirj)
mX

ij (X) = X, idX(sisj)
mX

ij (αk) = αk

for all k ∈ I \ {i, j}.
In this case,

∆X re ∩ NI
0 =

⋃
κ X-reduced

ΛX(κ)

and mX
ij = mX

ij for all X ∈ X and i, j ∈ I.

7. The semi-Cartan graph of a Nichols algebra

Definition 7.1. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I. Let l ∈ N0

and i1, . . . , il ∈ I. Let N be a pre-Nichols system of M .

(1) We say that M admits the reflection sequence (i1, . . . , il) if l = 0 or if M
is i1-finite and Ri1(M) admits the reflection sequence (i2, . . . , il).

(2) We say that N admits the reflection sequence (i1, . . . , il) if l = 0 or if N
is a Nichols system of (M, i1), M is i1-finite, and Ri1(N ) admits the reflection
sequence (i2, . . . , il).
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(3) We say that M admits all reflections if M admits all reflection sequences
(j1, . . . , jk) with k ∈ N0 and j1, . . . , jk ∈ I.

(4) We say that N admits all reflections if N admits all reflection sequences
(j1, . . . , jk) with k ∈ N0 and j1, . . . , jk ∈ I.

(5) Assume that M admits all reflections. Let

FH
θ (M) = {Rj1(· · ·Rjk(M)) | k ∈ N0, j1, . . . , jk ∈ I}.

Theorem 7.2. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I. Assume that

M admits all reflections. Let X = {[P ] | P ∈ FH
θ (M)}, and let r : I × X → X ,

(i, [P ]) 7→ [Ri(P )]. Then

G(M) = G(I,X , r, (AX)X∈X ),

where A[P ] = (aPij)i,j∈I for all [P ] ∈ X , is a semi-Cartan graph.

Definition 7.3. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I. Assume

that M admits all reflections. We call G(M) the semi-Cartan graph of M , and
W(M) =W(G(M)) the Weyl groupoid of M . Often it will be more convenient to
say that G(M) is the semi-Cartan graph of B(M) and W(M) is the Weyl groupoid
of B(M).

There is a special case where M admits all reflections.

Proposition 7.4. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I. Assume that

B(M) is a finite-dimensional vector space over k. Then M admits all reflections,
and dimB(P ) = dimB(M) for each P ∈ FH

θ (M).

8. The combinatorics of right coideal subalgebras

In Theorem 4.3 we described a relationship between graded right coideal sub-
algebras of a Nichols system and its reflection, respectively. Now we are able to
formulate an iterated version of this relationship.

Definition 8.1. Let M ∈ FH
θ such that Mi is irreducible in H

HYD for all i ∈ I. Let
N = N (S,N, f) be a pre-Nichols system of M . Let l ∈ N0 and let i1, . . . , il ∈ I.
Assume that N admits the reflection sequence (i1, . . . , il). Let

R()(N ) = N , LN() = S, TN() = idS, K−()(N ) = K(N ), tN() = idK(N ),



14

and for any 1 ≤ k ≤ l define inductively

R(i1,...,ik)(N ) =Rik(· · ·Ri1(N )),

LN(i1,...,ik) =
(
T
R(i1,...,ik−1)(N )

ik

)−1(
K

R(i1,...,ik−1)(N )

ik
∩ LN(i1,...,ik−1)

)
,

TN(i1,...,ik) =TNi1 T
Ri1

(N )
i2

· · ·T
R(i1,...,ik−1)(N )

ik
: LN(i1,...,ik) → S

and

K−(i1,...,ik)(R(i1,...,ik)(N )) =(
t
R(i1,...,ik−1)(N )

ik

)−1(
K+
ik

(
R(i1,...,ik−1)(N )

)
∩ K−(i1,...,ik−1)

(
R(i1,...,ik−1)(N )

))
,

tN(i1,...,ik) = tNi1 · · · t
R(i1,...,ik−1)(N )

ik
: K−(i1,...,ik)(R(i1,...,ik)(N ))→ K(N ).

Theorem 8.2. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I.
Assume that M admits all reflections. Let N = N (S,N, f) be a pre-Nichols system
of M . Let l ≥ 1 and i1, . . . , il ∈ I. Assume that (i1, . . . , il) is [M ]-reduced in the
semi-Cartan graph G(M) and that N admits the reflection sequence (i1, . . . , il). For
any 1 ≤ k ≤ l, let βk = id[M ]si1 · · · sik−1(αik).

(1) β1, . . . , βl are pairwise distinct non-zero elements of Nθ
0.

(2) For any 1 ≤ k ≤ l, R(i1,...,ik−1)(N )ik ⊆ LN(i1,...,ik−1). Let

Nβk = NNk (i1, . . . , il) = TN(i1,...,ik−1)(R(i1,...,ik−1)(N )ik).

(3) k1 ∈ K−(i1,...,il)(R(i1,...,il)(N )). Let EN (i1, . . . , il) = tN(i1,...,il)(k1).

(4) For any 1 ≤ k ≤ l, Nβk ⊆ EN (i1, . . . , il) is a finite-dimensional irreducible
subobject in H

HYD of degree βk.
(5) For any 1 ≤ k ≤ l, the identity on Nβk induces a graded isomorphism B(Nβk)

∼=
k[Nβk] ⊆ S of Nθ

0-graded algebras in H
HYD.

(6) The multiplication map k[Nβl]⊗· · ·⊗k[Nβ1]→ EN (i1, . . . , il) is an isomorphism
of Nθ

0-graded objects in H
HYD.

(7) Let EB(M)(i1, . . . , il) = EN0(i1, . . . , il) with N0 = N (B(M),M, id). The canon-
ical map pN : S → B(M) in H

HYD induces an isomorphism

EN (i1, . . . , il)→ EB(M)(i1, . . . , il).

In particular, all right coideal subalgebras EN (i1, . . . , il) in the Theorem are tensor
decomposable, and precise information on the tensor decomposition is available.
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Corollary 8.3. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I and
M admits all reflections. Then G(M) is a Cartan graph.

Note that (CG3)’ follows directly from the above theorem. The proof of (CG4)’
needs a bit more effort.

Corollary 8.4. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I. Let
l ≥ 1 and i1, . . . , il ∈ I. Assume that M admits all reflections and that κ = (i1, . . . , il)
is [M ]-reduced in the semi-Cartan graph G(M). If αi ∈ Λ[M ](κ) for all i ∈ I, then
the following hold.

(1) EB(M)(i1, . . . , il) = B(M).
(2) For any pre-Nichols system N = N (S,N, f) of M admitting the reflection

sequence κ, the map pN : S → B(M) is bijective.

Corollary 8.5. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I. The
following are equivalent.

(1) B(M) is finite-dimensional
(2) M admits all reflections and

(a) G(M) is finite, and
(b) B(Pi) is finite-dimensional for all P ∈ FH

θ (M) and i ∈ I.

The latter corollary is the starting point of the classification of finite-dimensional
Nichols algebras of semisimple Yetter-Drinfeld modules over finite groups.

Finally, we can give a description of right coideal subalgebras of finite-dimensional
Nichols algebras of semi-simple Yetter-Drinfeld modules.

Corollary 8.6. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I.
Assume that M admits all reflections, and that G(M) is finite. For all P ∈ FH

θ (M),
the map

EB(P ) : Hom(W(M), [P ])→ K(B(P )), w 7→ EB(P )(w),

is bijective, where EB(P )(w) = EB(P )(κ) for any reduced decomposition κ of w,

In fact, there is a natural ordering (the Duflo or weak order) on Hom(W(M), [P ]),
such that the bijection in the Corollary is compatible with the inclusion on K(B(P ))
and with this ordering on Hom(W(M), [P ]).



16

9. Applications to Hopf algebras

The following problems have accessible proofs based on the presented methods.

(1) Theorem of Angiono: All finite-dimensional pointed complex Hopf algebras
with abelian coradical are generated by skew-primitive elements.

(2) Classification of finite-dimensional coradically graded pointed complex Hopf
algebras with abelian coradical

(3) Classification of finite-dimensional Nichols algebras over finite groups (under
some technical restrictions to exclude the Nichols algebras of ireducible Yetter-
Drinfeld modules)

(4) Quantum groups of finite type for non-roots of unity are Drinfeld doubles of
Nichols algebras.

(5) Small quantum groups of finite type are Drinfeld doubles of Nichols algebras
under some extra assumption on q. (We say: the braiding matrix is genuinely
of Cartan type.) The latter is needed because in some cases the Nichols
algebras have extra relations. The root vector relations of the small quantum
groups can be obtained by the introduction of root vector sequences based on
sequences of right coideal subalgebras. Such root vector sequences are then
unique up to scalar multiples, and do not depend on ad hoc constructions.


