Nov 20

Jornada de doble seminario del 23 de noviembre

La jornada constará de dos seminarios, con el siguiente cronograma:

* 14.30-15.30: Seminario de Giovana Carnovale,

* 15.30-16.00: Café en la Sala de Matemática,

* 16.00-17.00: Seminario de Iván Darío Gomez

Más información sobre cada charla a continuación.

23/11/2017, 14:30 hs, aula 27 FaMAF

The Jordan stratification in Lie algebras and algebraic groups

f4

Expositor: Giovana Carnovale

Resumen: Semisimple Lie algebras and algebraic groups can be stratified in terms of so-called Jordan classes or decomposition classes. In the Lie algebra case they were introduced in Borho and Kraft’s work on sheets whereas the group analogue appeared in Lusztig’s construction of generalised Springer’s correspondence. Roughly speaking, Jordan classes are unions of adjoint orbits (or conjugacy classes) that are isomorphic as homogeneous space. We are interested in their geometry and in the geometry of the induced stratifications on the geometric quotients of the Lie algebra and of the group. We will show how some of these problems can be interpreted in terms of hyperplane arrangements.
It is based on a joint project with Francesco Esposito.

 

23/11/2017, 16:00 hs, aula 27 FaMAF

Estructura del producto tensorial de los sl(2)⋉ V(m)​​ -módulos uniseriales

f4

Expositor: Iván Darío Gomez

Resumen:  Sea ℊ​​ un álgebra de Lie sobre ℂ​​, el sócalo de un ℊ-módulo V​​ es el único ℊ​​-submódulo maximal semisimple de V y se denota por soc​​(V). A V se le denomina uniserial si la serie del sócalo es una serie de composición, es decir,


soc0(V)⊂ soc1(V)⊂ \hdots ⊂ socn(V)=V​​


es una serie de composición donde soci(V)/soci-1(V)=soc(V/soci-1(V))  para 1≤ i≤ n.


En [C-S] se obtiene la clasificación de los ℊ​​-módulos uniseriales cuando la descomposición de Levi de ℊ​​ es sl(2)⋉ V(m) ​ para m≥ 1​​, donde V(m)​​ es un sl(2)​​-módulo irreducible de peso máximo m​​.
Tales módulos uniseriales son los Z(a,l)​​ (salvo algunos caso especiales) los cuales vistos como sl(2)​​-módulos son Z(a,l)=⨁i=0l V(a+im)​​  y sus respectivos duales Z(a,l)*​​ con a,l ∈ ℕ∪ {0}​​.


En la primera parte de esta charla se hablará sobre el sócalo del producto tensorial de sl(2)⋉ V(m)​​ -módulos uniseriales, el cual nos permite construir nuevos módulos y demostrar con m​​​​ impar que Z(0,1)⊗ Z(b,1)​​​​ es indescomponible si b≠ 0​​​​.


Recordamos que un ℊ​​​​-módulo V​​​​ es cíclico si V=U(ℊ)v​​ para algún v∈ V​​​​ y donde U(ℊ)v​​​ es la envolvente universal de ℊ​​​​. En la segunda parte de la charla, se mostrará que ciertos productos tensoriales de sl(2)⋉ V(m)​​​​-módulos uniseriales son módulos cíclicos.


Bibliografía:
[Ca] P. Casati, The classification of the perfect cyclic sl(n+1)⋉ ℂn+1, Journal of Algebra 476 (2017) 311-343.


[C-S] L. Cagliero and F. Szechtman, The classification of uniserial sl(2)⋉ V(m)-modules and a new interpretation of the Racah-Wigner 6j-symbol, J. of Algebra, Volume 386 (2013), 142-175.


[Pi] A. Piard, Sur des représentations indécomposables de dimension finie de \matfrak{SL}(2).R2​​, Journal of Geometry and Physics, Volume 3, Issue 1, 1986, 1–53.

 

 

 

Nov 06

Seminario del 09 de noviembre

09/11/2017, 16.00 hs, aula 27 FaMAF

Hopf algebras having a dense big cell

f4

Expositor: Julien Bichon

Resumen: We will discuss some axioms that ensure that a quantum goup has its irreducible representations classified by means of an analogue of the Borel-Weil construction. The axioms are inspired by the work of Parshall-Wang for the usual q-deformation of GL(n).
We will examine in detail the example of the the free quantum group GL(2), for which the weight group is the free group on two generators. The talk will be based on joint work with Simon Riche.

Nov 06

Seminar of November 9th

09/11/2017, 16.00 hs, aula 27 FaMAF

Hopf algebras having a dense big cell

f4

Speaker: Julien Bichon

Abstract: We will discuss some axioms that ensure that a quantum goup has its irreducible representations classified by means of an analogue of the Borel-Weil construction. The axioms are inspired by the work of Parshall-Wang for the usual q-deformation of GL(n).
We will examine in detail the example of the the free quantum group GL(2), for which the weight group is the free group on two generators. The talk will be based on joint work with Simon Riche.

Nov 06

Seminario del 26 de Octubre

26/10/2017, 14.30 hs, aula 27 FaMAF

Rigidez de álgebras de Lie k pasos nilpotentes vía el teorema de Nash-Moser

f4

Expositor: Augusto Chavez

Resumen: Al conjunto de las álgebras de Lie de dimensión finita n, k-pasos nilpotentes, se les asocia un conjunto algebraico N_{n,k}. Nos dedicaremos a aplicar el teorema de Nash-Moser para secuencias exactas cotas de R. Hamilton en el contexto de rigidez en el conjunto N_{n,k}.

Dada un álgebra de Lie g de dimensión finita n k-pasos nilpotente, discutiremos algunos aspectos de cierto espacio vectorial H^{2}_{k−nil}(g, g), el cual nos provee información sobre la rigidez de g en N_{n,k}. Daremos algunos ejemplos de álgebras de Lie rígidas en N_{n,k}. Cuando k=2, presentaremos algunos criterios mas sobre rígidez en N_{n,2}.

Este es un trabajo en conjunto con Cagliero, Leandro y Brega, Oscar.

Nov 06

Seminar of October 26th

26/10/2017, 14.30 hs, aula 27 FaMAF

Rigidity of the k-steps nilpotent Lie algebras through the Nash-Moser theorem

f4

Speaker: Augusto Chavez

Abstract: Given the set of k-step nilpotent Lie algebras of dimension n, we associate an algebraic set N_{n, k} for them. We apply the Nash-Moser theorem to exact sequences of R. Hamilton in the context of rigidity in the set N_{n, k}.
Given a k-step nilpotent Lie algebra of dimension n, we will discuss some aspects of a certain vector space H^{2} _{k-nil} (g, g), which gives us information about the rigidity of g in N_{n, k}. We will give some examples of rigid Lie algebras in N_{n,k}. When k = 2, we will present some more criteria on rigidity in N_ {n, 2}.

Oct 10

Double seminar day of November 23th

The seminar will have two talks, with the following schedule:

* 14.30-15.30: Seminar of Giovanna Carnovale,

* 15.30-16.00: Coffee at Sala de Matemática,

* 16.00-17.00: Seminar of Iván Darío Gomez.

More information about each talk is available below.

23/11/2017, 14:30 hs, aula 27 FaMAF

The Jordan stratification in Lie algebras and algebraic groups

f4

Expositor: Giovanna Carnovale 

Resumen: Semisimple Lie algebras and algebraic groups can be stratified in terms of so-called Jordan classes or decomposition classes. In the Lie algebra case they were introduced in Borho and Kraft’s work on sheets whereas the group analogue appeared in Lusztig’s construction of generalised Springer’s correspondence. Roughly speaking, Jordan classes are unions of adjoint orbits (or conjugacy classes) that are isomorphic as homogeneous space. We are interested in their geometry and in the geometry of the induced stratifications on the geometric quotients of the Lie algebra and of the group. We will show how some of these problems can be interpreted in terms of hyperplane arrangements.
It is based on a joint project with Francesco Esposito.

 

23/11/2017, 16:00 hs, aula 27 FaMAF

Extensiones modulares de categorías de fusión super-Tannakianas

f4

Expositor: Iván Darío Gomez

Resumen: Let ℊ​​ be Lie algebra over ℂ​​, the socle of the ℊ​​-module V​​ is the unique maximal semi-simple ℊ​​-submodule of V and it is denote soc​​(V). A V​​ it is called uniserial if the socle series is a composition series, i.e,

 
soc0(V)⊂ soc1(V)⊂ \hdots ⊂ socn(V)=V​​

 
is a composition series where soci(V)/soci-1(V)=soc(V/soci-1(V)) for ​​1≤ i≤ n.


In [C-S] it is obtenied the classification of the uniserial ℊ​​-modules when the Levi descomposition of ℊ​​ is sl(2)⋉ V(m) for ​​m≥ 1, where ​​V(m) is a irreducible ​​sl(2)-module of highest weight m​​.
These uniserial modules are the Z(a,l)​​ (except for some special case) which as sl(2)​​-modules are

Z(a,l)=⨁i=0l V(a+im)​​ and its respective dual Z(a,l)*​​ with a,l ∈ ℕ∪ {0}​​.


In the first part of this talk will be discussed over the socle of the tensorial product of the uniserial sl(2)⋉ V(m)-modules, which we allow construct new modules and proof with ​​m odd that Z(0,1)⊗ Z(b,1)​​ is indecomposable if b≠ 0​​.


Remember that is V is a cyclic ​​ℊ-module if V=U(ℊ)v​​ for some v∈ V​​ y where U(ℊ)v​​ is the universal envelope of ℊ​​. In the second part of the talk, will be shown that certain tensorial products of uniserial sl(2)⋉ V(m)-modules are cyclics modules.


Bibliography:
[Ca] P. Casati, The classification of the perfect cyclic sl(n+1)⋉ ℂn+1, Journal of Algebra 476 (2017) 311-343.


[C-S] L. Cagliero and F. Szechtman, The classification of uniserial sl(2)⋉ V(m)-modules and a new interpretation of the Racah-Wigner 6j-symbol, J. of Algebra, Volume 386 (2013), 142-175.


[Pi] A. Piard, Sur des représentations indécomposables de dimension finie de \matfrak{SL}(2).R2​​, Journal of Geometry and Physics, Volume 3, Issue 1, 1986, 1–53.

 

 

 

 

Oct 09

Seminario del 12 de octubre

12/10/2017, 14.30 hs, aula 27 FaMAF

Álgebras de Hopf copunteadas sobre grupos diedrales

f4

Expositor: Fernando Fantino

Resumen: En esta charla se expondrán consideraciones generales sobre la clasificación de las álgebras de Hopf (co)punteadas de dimensión finita sobre un cuerpo algebraicamente cerrado de característica cero y se presentará la clasificación de las álgebras de Hopf copunteadas sobre los grupos diedrales de orden 8t, t>2.
Este es un trabajo en conjunto con G. A. Garcia y M. Mastnak.

Oct 09

Seminar of October 12th

12/10/2017, 14.30 hs, aula 27 FaMAF

Copointed Hopf algebras over dihedral groups

f4

Speaker: Fernando Fantino

Abstract: In this talk we will give general considerations on the classification of (co)pointed Hopf algebras of finite dimension over an algebraically closed filed of characteristic zero and we will present the classification of copointed Hopf algebras over dihedral groups of order 8t, t>2.
This is a joint work with G. A. Garcia y M. Mastna

Sep 29

Jornada de Matemática 2017

El lunes 02 de octubre de 14hs a 19hs, en el Aula Magna de FaMAF, los grupos de la sección de Matemática contarán a los estudiantes algunos de los temas de investigación abordados en cada grupo.

 

El objetivo de la Jornada es que algunos grupos de investigación y egresados de FaMAF trabajando en el sector sector no académico
expongan sobre sus trabajos actuales, haciéndolos accesibles al resto de la sección y posibilitando interacciones y la comunicación
con todos los doctorandos y alumnos avanzados de la Licenciatura.
Esta jornada es una iniciativa de la CAM.

Cronograma

Las charlas comienzan desde las 14 Hs.
Hacemos una invitación especial a los distintos profesores de la sección para que nos acompañen en el desarrollo de la jornada
y muy especialmente de 16:50-17:20 Hs. donde podrán compartir un café con los estudiantes de licenciatura y conversar con ellos
sobre especialidades y propuestas de trabajos finales.

Jornada de Matemática: Lunes 2 de octubre

  • 14:00-14:20 hs: Pablo Román (Teoría de Lie)
  • 14:20-14:40 hs: Pedro Sanchez Terraf (Semántica Algebraica)
  • 14:40-15:00 hs: Laura Nores (Probabilidad y Estadística)
  • 15:00-15:20 hs: Ronda de preguntas

 

  • 15:20-15:30 hs: Recreo

 

  • 15:30-15:50 hs: Silvina Riveros (Ecuaciones Diferenciales y Análisis Armónico)
  • 15:50-16:10 hs: Ariel Pacetti (Teoría de Números)
  • 16:10-16:30 hs: Damián Fernandez (Análisis Numérico y Computación)
  • 16:30-16:50 hs: Ronda de preguntas

 

  • 16:50-17:20 hs: Café

 

  • 17:20-17:40 hs: Mónica Villarreal y Cristina Esteley (Educación Matemática)
  • 17:40-18:00 hs: Adrián Andrada (Geometría Diferencial)
  • 18:00-18:20 hs: Egresados Matías Marenchino (Intel) y Gustavo Gianotti (Machinalis)
  • 18:20-18:40 hs: Ronda de preguntas

Sep 29

Curso de posgrado: Introducción a las álgebras de Hopf

Dictado por: Sonia Natale

Programa:

  • Unidad I: Álgebras y coálgebras sobre un cuerpo. Definiciones y ejemplos. Categoría de comódulos sobre una coálgebra. Álgebras de Hopf. Definiciones y propiedades básicas. Ejemplos. Álgebras de Taft. Ejemplos provenientes de factorizaciones
    exactas en grupos finitos.
  • Unidad II: Integrales. Teorema Fundamental de los Módulos de Hopf. Álgebras de Hopf de dimensión finita. Teorema de Maschke. Fórmula de Radford para la potencia cuarta de la antípoda. Teorema de Larson­Radford sobre el cuadrado de la antípoda.
    Teorema de Nichols­Zoeller.
  • Unidad III: Álgebras de Hopf cuasi­triangulares y categorías trenzadas. Doble de Drinfeld. Módulos de Yetter­Drinfeld. Álgebras en categorías monoidales. Álgebras de Hopf en categorías trenzadas. Biproducto de Majid­Radford.